Nuclear Magnetic Resonance Measurement of Organic Charge-transfer Complexes over a Temperature Range

By R. Foster,* C. A. Fyfe, and (in part) M. I. Foreman (Chemistry Department, University of Dundee, Dundee)

Determinations of equilibrium constants for organic electron-donor-acceptor (charge-transfer) complexes^{1,2} have now been extended over the temperature range -5° to $+45^{\circ}$. The method of evaluation described previously has been used.² Good straight lines of log K against 1/T are obtained, confirming the 1:1 stoicheiometry of the complexes. Values of enthalpy (ΔH_0) and entropy (ΔS_0) of formation for complexes of a series of

methylbenzenes with the acceptors 1,3,5-trinitrobenzene and with fluoranil in carbon tetrachloride are given in the Table.

The ¹H resonance of 1,3,5-trinitrobenzene only varies within 2 c./sec. in the range -5° to $+45^{\circ}$. The chemical shift of the ¹H in the acceptor moiety of the pure complex in carbon tetrachloride relative to the chemical shift of ¹H in free acceptor in the solvent (Δ_0) is also effectively constant. This

TABLE

Thermodynamic constants* for charge-transfer complexes of a series of donors with fluoranil (FA) and 1,3,5-trinitrobenzene

(TNB) in carbon tetrachloride

					F	A	TNB	
				_				
Donor				·	$\Delta H_{f 0} \ m (kcal./mole)$	$\frac{\Delta S_0}{(\text{e.u.})}$	ΔH_{0} (kcal./mole)	ΔS_{0} (e.u.)
Benzene					-2.0_{4}	-7.4	-1.9_{5}	-7.8
Toluene					-2.3_{0}	-7.5	-2·1 ₉	-7.9
p-Xylene					$-2\cdot7_3$	-8.0	$-2\cdot52_2$	-8.2
Mesitylene					-3.0^{3}	-8.1	-2.8_{5}	8·8
Durene					-3.9_{2}	-9.6	-3.0^{4}	-8.5
Pentamethylbenzene					4·4 ₃	-10.1	-3.3°	-8.6
Hexamethylbenzene					-5.4_{1}	-12.2	3·6 ₉	-8.8

would seem to rule out important solvent effects in these complexes. The $^{19}\mathrm{F}$ resonance of fluoranil, however, is temperature dependent, (36 c./sec. within the range -5° to 45°). The Δ_0 values for the fluoranil complexes are also temperature dependent to about the same extent as free fluoranil. However the trend of Δ_0 with association constant for the various fluoranil complexes is maintained at any given temperature.

With the exception of the mesitylene complexes the values of ΔH_0 for each series of complexes shows a regular variation with increasing methylation of the benzene ring of the donor. A similar behaviour in ΔS_0 is also observed (Table). The variation of ΔH_0 with ΔS_0 for each series is consequently regular.

(Received, January 11th, 1967; Com. 034.)

* based on association constants measured in kg. solution/mole.

¹ M. W. Hanna and A. L. Asbaugh, J. Phys. Chem., 1964, 68, 811.

² R. Foster and C. A. Fyfe, Trans. Faraday Soc., 1965, 61, 1626.